Info

The Parkinson's-Reversing Breakthrough

Parkinson Disease Diets

Get Instant Access

145. Lothman EW, Collins RC. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalograph^ and neuropathological correlates. Brain Res 1981; 218:299-318.

146. Pereira de Vasconcelos A, Vergnes M, Boyet S, Marescaux C, Nehlig A. Forebrain metabolic activation induced by the repetition of audiogenic seizures in Wistar rats. Brain Res 1997; 762:114-120.

147. Wooten GF, Collins RC. Regional brain glucose utilization following intrastriatal injections of kainic acid. Brain Res 1980; 201:173-184.

148. Sperber EF, Stanton PK, Haas K, Ackermann RF, et al. Developmental differences in the neurobiology of epileptic brain damage. Epilepsy Res Suppl 1992; 9:67-80.

149. Sankar R, Shin D, Mazarati AM, Liu H, et al. Epileptogenesis after status epilepticus reflects age- and model- dependent plasticity. Ann Neurol 2000; 48:580-589.

150. Sankar R, Shin DH, Liu H, Mazarati A, et al. Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 1998; 18:8382-8393.

151. Kubova H, Druga R, Lukasiuk K, Suchomelova L, et al. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J Neurosci 2001; 21:3593-3599.

152. Roch C, Leroy C, Nehlig A, Namer IJ. Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium-pilocarpine model. Epilepsia 2002; 43:1129-1136.

153. Roch C, Leroy C, Nehlig A, Namer IJ. Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia 2002; 43:325-335.

154. Gale K. Subcortical structures and pathways involved in convulsive seizure generalization. J Clin Neurophysiol 1992; 9:264-277.

155. Gale K. Focal trigger zones and pathways of propagation in seizure generation. In: Schwartzkroin PA, ed. Epilepsy: Models, Mechanisms and Concepts. New York: Cambridge University Press, 1993:27-47.

156. Iadarola MJ, Gale K. Substantia nigra: site of anticonvulsant activity mediated by 7-aminobutyric acid. Science 1982; 218:1237-1240.

157. Maggio R, Gale K. Seizures evoked from area tempestas are subject to control by GABA and glutamate receptors in substantia nigra. Exp Neurol 1989; 105:184-188.

158. Redgrave P, Marrow L, Dean P. Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience 1992; 50:571-595.

159. Redgrave P, Marrow L, Dean P. Anticonvulsant role of nigrotectal projection in the maximal electroshock model of epilepsy. II. Pathways from substantia nigra pars lateralis and adjacent peripeduncular area to the dorsal midbrain. Neuroscience 1992; 46:391-406.

160. Redgrave P, Simkins M, Overton P, Dean P. Anticonvulsant role of nigrotectal projection in the maximal electroshock model of epilepsy. I. Mapping of dorsal midbrain with bicuculline. Neuroscience 1992; 46:379-390.

161. Deransart C, Marescaux C, Depaulis A. Involvement of nigral glutamatergic inputs in the control of seizures in a genetic model of absence epilepsy in the rat. Neuroscience

1996; 71:721-728.

162. Velfskova J, Velfsek L, Moshe SL. Subthalamic nucleus: A new anticonvulsant site in the brain. Neuroreport 1996; 7:1786-1788.

163. Velfskova J, Miller AM, Nunes ML, Brown LL. Regional neural activity within the substantia nigra during peri-ictal flurothyl generalized seizure stages. Neurobiol Dis

2005; 20:752-759.

164. Velfskova J, Liptakova S, Hussain S. The effects of N-methyl-D-aspartate antagonist 2-amino-7-phosphonoheptanoic acid microinfusions into the adult male rat substantia nigra pars reticulata are site-specific. Neurosci Lett 2001; 316:108-110.

165. Moshe SL, Brown LL, Kubova H, Velfskova J, et al. Maturation and segregation of brain networks that modify seizures. Brain Res 1994; 665:141-146.

166. Velfskova J, Velfsek L, Nunes M, Moshe S. Developmental regulation of regional functionality of substantia nigra GABAa receptors involved in seizures. Eur J Pharmacol

1996; 309:167-173.

167. Shehab S, Simkins M, Dean P, Redgrave P. Regional distribution of the anticonvulsant and behavioural effects of muscimol injected into the substantia nigra of rats. Eur J Neurosci 1996; 8:749-757.

168. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 4th ed. San Diego: Academic Press, 1998.

169. Velfskova J, Löscher W, Moshe SL. Regional and age specific effects of zolpidem microinfusions in the substantia nigra on seizures. Epilepsy Res 1998; 30:107-114.

170. Velfskova, J, Moshe, SL. Sexual dimorphism and developmental regulation of substantia nigra function. Ann Neurol 2001; 50:596-601.

171. Velfsek L, Velfskova J, Moshe SL. Site-specific effects of local pH changes in the substantia nigra pars reticulata on flurothyl-induced seizures. Brain Res 1998; 782:310-313.

172. Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAa receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon.

J Neurosci 1992; 12:1040-1062.

173. Velfsek L, Velfskova J, Ravizza T, Giorgi FS, et al. Circling behavior and [14C]2-deoxyglucose mapping in rats: possible implications for autistic repetitive behaviors. Neurobiol Dis 2005; 18:346-355.

174. Moshe SL, Albala BJ. Nigral muscimol infusions facilitate the development of seizures in immature rats. Brain Res 1984; 315:305-308.

175. Xu SG, Garant DS, Sperber EF, Moshe SL. The proconvulsant effect of nigral infusions of THIP on flurothyl-induced seizures in rat pups. Brain Res Dev Brain Res 1992; 68:275-277.

176. Lee VWK, de Kretser DM, Hudson B, Wang C. Variations in serum FSH, LH and testosterone levels in male rats from birth to sexual maturity. J Reprod Fertil 1975; 42:121-126.

177. Piacsek BE, Goodspeed MP. Maturation of the pituitary-gonadal system in the male rat. J Reprod Fertil 1978; 52:29-35.

78. Döhler KD, Wuttke W. Changes with age in levels of serum gonadotropins, prolactin, and gonadal steroids in prepubertal male and female rats. Endocrinology 1975; 97:898-907.

79. Velfskova J, Moshe SL. Update on the role of substantia nigra pars reticulata in the regulation of seizures. Epilepsy Curr 2006; 6:83-87.

80. Meencke HJ, Gerhard C. Morphological aspects of aetiology and the course of infantile spasms (West-syndrome). Neuropediatrics 1985; 16:59-66.

81. Nagata Y, Matsumoto H. Studies on methylazoxymethanol; methylation of nucleic acids in fetal rat brain. Proc Soc Exp Biol Med 1969; 132:383-385.

82. Angerine JB, Sidman RL. Autoradiographic study of cell migration during histogenesis of cerebral cortex of mouse. Nature 1961; 1192:766-768.

83. Paredes M, Pleasure SJ, Baraban SC. Embryonic and early postnatal abnormalities contributing to the development of hippocampal malformations in a rodent model of dysplasia. J Comp Neurol 2006; 495:133-148.

84. Germano IM, Sperber EF. Transplacentally induced neuronal migration disorders: an animal model for the study of the epilepsies. J Neurosci Res 1998; 51:473-488.

85. de Feo MR, Mecarelli O, Ricci GF. Seizure susceptibility in immature rats with micrencephaly induced by prenatal exposure to methylazoxymethanol acetate. Pharmacol

Res 1995; 31:109-114.

86. Rafiki A, Chevassus-au-Louis N, Ben-Ari Y, Khrestchatisky M, et al. Glutamate receptors in dysplasic cortex: an in situ hybridization and immunohistochemistry study in rats with prenatal treatment with methylazoxymethanol. Brain Res 1998; 782:147-152.

87. Baraban SC, Schwartzkroin PA. Electrophysiology of CA1 pyramidal neurons in an animal model of neuronal migration disorders: prenatal methylazoxymethanol treatment. Epilepsy Res 1995; 22:145-156.

88. Chevassus-au-Louis N, Rafiki A, Jorquera I, Ben-Ari Y, et al. Neocortex in the hippocampus: an anatomical and functional study of CA1 heterotopias after prenatal treatment with methylazoxymethanol in rats. J Comp Neurol 1998; 394:520-536.

89. Escueta AV, Davidson D, Hartwig G, Reilly E. The freezing lesion. II. Potassium transport within nerve terminals isolated from epileptogenic foci. Brain Res 1974; 78:223-227.

90. Escueta AV, Davidson D, Hartwig G, Reilly E. The freezing lesion. III. The effects of diphenylhydantoin on potassium transport within nerve terminals from the primary foci. Brain Res 1975; 86:85-96.

91. Dvorak, K, Feit, J. Migration of neuroblasts through partial necrosis of the cerebral cortex in newborn rats. Contribution of the problems of morphological developmental period of cerebral microgyria. Acta Neuropathol 1977; 38:203-212.

92. Rosen GD, Sherman GF, Galaburda AM. Birthdates of neurons in induced microgyria. Brain Res 1996; 727:71-78.

93. Schwarz P, Stichel CC, Luhmann HJ. Characterization of neuronal migration disorders in neocortical structures: loss or preservation of inhibitory interneurons? Epilepsia 2000;

41:781-787.

94. Redecker C, Luhmann HJ, Hagemann G, Fritschy JM, et al. Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J Neurosci 2000; 20:5045-5053.

95. Jacobs KM, Gutnick MJ, Prince DA. Hyperexcitability in a model of cortical maldevelopment. Cereb Cortex 1996; 6:514-523.

96. Kraemer M, Roth-Haerer A, Bruehl C, Luhmann HJ, et al. Metabolic and electro-physiological alterations in an animal model of neocortical neuronal migration disorder. Neuroreport 2001; 12:2001-2006.

97. Rosen GD, Sigel EA, Sherman GF, Galaburda AM. The neuroprotective effects of MK-801 on the induction of microgyria by freezing injury to the newborn rat neocortex. Neuroscience 1995; 69:107-114.

98. Redecker C, Hagemann G, Kohling R, Straub H, et al. Optical imaging of epileptiform activity in experimentally induced cortical malformations. Exp Neurol 2005; 192: 288-298.

99. Setkowicz Z, Janeczko K. Long-term changes in susceptibility to pilocarpine-induced status epilepticus following neocortical injuries in the rat at different developmental stages. Epilepsy Res 2003; 53:216-224.

200. Setkowicz Z, Klak K, Janeczko K. Long-term changes in postnatal susceptibility to pilocarpine-induced seizures in rats exposed to gamma radiation at different stages of prenatal development. Epilepsia 2003; 44:1267-1273.

201. Setkowicz Z, Janeczko K. A strong epileptogenic effect of mechanical injury can be reduced in the dysplastic rat brain. Long-term consequences of early prenatal gammairradiation. Epilepsy Res 2005; 66:165-172.

202. Setkowicz Z, Janicka D, Kowalczyk A, Turlej A, et al. Congenital brain dysplasias of different genesis can differently affect susceptibility to pilocarpine- or kainic acid-induced seizures in the rat. Epilepsy Res 2005; 67:123-131.

203. Pennacchio LA, Lehesjoki AE, Stone NE, Willour VL, et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 1996; 271:1731-1734.

204. Noebels JL, Tharp BL. Absence seizures in developing brain. In: Schwartzkroin PA, Moshe SL, Noebels JL, Swann JW, eds. Brain Development and Epilepsy. Oxford: Oxford University Press, 1995:66-93.

205. Meldrum B. GABAergic agents as anticonvulsants in baboons with photosensitive epilepsy. Neurosci Lett 1984; 47:345-349.

206. Meldrum BS, Croucher MJ, Badman G, Collins JF. Antiepileptic action of excitatory amino acid antagonists in the photosensitive baboon, Papio papio. Neurosci Lett 1983; 39:101-104.

207. Meldrum BS, Horton RW. Convulsive effects of 4-deoxypyridoxine and of bicuculline in photosensitive baboons (Papio papio) and in rhesus monkeys (Macaca mulatta). Brain

Res 1971; 35:419-436.

208. Meldrum BS, Horton RW. Neuronal inhibition mediated by GABA and patterns of convulsions in baboons with photosensitive epilepsy. In: Harris P, Mawdsley C, eds. Epilepsy. New York: Churchill-Livingstone, 1974:55-64.

Was this article helpful?

0 0

Post a comment